2 research outputs found

    Approximation algorithms for geometric dispersion

    Get PDF
    The most basic form of the max-sum dispersion problem (MSD) is as follows: given n points in R^q and an integer k, select a set of k points such that the sum of the pairwise distances within the set is maximal. This is a prominent diversity problem, with wide applications in web search and information retrieval, where one needs to find a small and diverse representative subset of a large dataset. The problem has recently received a great deal of attention in the computational geometry and operations research communities; and since it is NP-hard, research has focused on efficient heuristics and approximation algorithms. Several classes of distance functions have been considered in the literature. Many of the most common distances used in applications are induced by a norm in a real vector space. The focus of this thesis is on MSD over these geometric instances. We provide for it simple and fast polynomial-time approximation schemes (PTASs), as well as improved constant-factor approximation algorithms. We pay special attention to the class of negative-type distances, a class that includes Euclidean and Manhattan distances, among many others. In order to exploit the properties of this class, we apply several techniques and results from the theory of isometric embeddings. We explore the following variations of the MSD problem: matroid and matroid-intersection constraints, knapsack constraints, and the mixed-objective problem that maximizes a combination of the sum of pairwise distances with a submodular monotone function. In addition to approximation algorithms, we present a core-set for geometric instances of low dimension, and we discuss the efficient implementation of some of our algorithms for massive datasets, using the streaming and distributed models of computation

    On vertices and facets of combinatorial 2-level polytopes

    Get PDF
    2-level polytopes naturally appear in several areas of mathematics, including combinatorial optimization, polyhedral combinatorics, communication complexity, and statistics. We investigate upper bounds on the product of the number of facets and the number of vertices, where d is the dimension of a 2-level polytope P. This question was first posed in [3], where experimental results showed an upper bound of d2^{d+1} up to d = 6, where d is the dimension of the polytope. We show that this bound holds for all known (to the best of our knowledge) 2-level polytopes coming from combinatorial settings, including stable set polytopes of perfect graphs and all 2-level base polytopes of matroids. For the latter family, we also give a simple description of the facet-defining inequalities. These results are achieved by an investigation of related combinatorial objects, that could be of independent interest
    corecore